منابع مشابه
Single-strand-specific nucleases.
Single-strand-specific nucleases, which act on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids, are multifunctional enzymes and are ubiquitous in distribution. They find wide application as analytical tools in molecular biology research, although enzymes such as P1 nuclease are also used for production of flavor enhancers such as 5' IMP and 5' GMP. Bec...
متن کاملHairpin opening by single-strand-specific nucleases.
DNA molecules with covalently sealed (hairpin) ends are probable intermediates in V(D)J recombination. According to current models hairpin ends are opened to produce short single-stranded extensions that are thought to be precursors of a particular type of extra nucleotides, termed P nucleotides, which are frequently present at recombination junctions. Nothing is known about the activities resp...
متن کاملSpecific hydrolysis of the cohesive ends of bacteriophage lambda DNA by three single strand-specific nucleases.
Procedures have been worked out for Aspergillus nuclease S1 and mung been nuclease to quantitatively cleave off both of the 12-nucleotide long, single-stranded cohesive ends of lambdaDNA. This cleavage is indicated by the almost complete elimination of the repair incorporation of radioactive nucleotides by DNA polymerase into the digested DNA. With S1 nuclease, cleavage was complete at 10 degre...
متن کاملTargeting DNA double-strand breaks with TAL effector nucleases.
Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.
متن کاملSingle strand binding protein specific for the polyoma early-coding strand of PEA1 (AP1) regulatory sequence.
We have shown that nuclear and cytosolic proteins from embryonal carcinoma F9 cells are able to bind to the early-coding strand of polyoma enhancer A domain. As demonstrated by mobility shift specific competition experiments, DNase I footprinting, depurination and depyrimidation interference, and proteolytic clipping performed with single stranded oligonucleotides, some of these proteins bind s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEMS Microbiology Reviews
سال: 2003
ISSN: 0168-6445
DOI: 10.1016/s0168-6445(02)00129-8